Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.

Identifieur interne : 000A02 ( Main/Exploration ); précédent : 000A01; suivant : 000A03

Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.

Auteurs : Peter J. Siska [États-Unis] ; Gerritje J W. Van Der Windt [Pays-Bas] ; Rigel J. Kishton [États-Unis] ; Sivan Cohen [États-Unis] ; William Eisner [États-Unis] ; Nancie J. Maciver [États-Unis] ; Arnon P. Kater [Pays-Bas] ; J Brice Weinberg [États-Unis] ; Jeffrey C. Rathmell [États-Unis]

Source :

RBID : pubmed:27511728

Descripteurs français

English descriptors

Abstract

Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction.

DOI: 10.4049/jimmunol.1502464
PubMed: 27511728
PubMed Central: PMC5010978


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.</title>
<author>
<name sortKey="Siska, Peter J" sort="Siska, Peter J" uniqKey="Siska P" first="Peter J" last="Siska">Peter J. Siska</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Van Der Windt, Gerritje J W" sort="Van Der Windt, Gerritje J W" uniqKey="Van Der Windt G" first="Gerritje J W" last="Van Der Windt">Gerritje J W. Van Der Windt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands;</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam</wicri:regionArea>
<wicri:noRegion>1105 AZ Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kishton, Rigel J" sort="Kishton, Rigel J" uniqKey="Kishton R" first="Rigel J" last="Kishton">Rigel J. Kishton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Sivan" sort="Cohen, Sivan" uniqKey="Cohen S" first="Sivan" last="Cohen">Sivan Cohen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Eisner, William" sort="Eisner, William" uniqKey="Eisner W" first="William" last="Eisner">William Eisner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pediatrics, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Maciver, Nancie J" sort="Maciver, Nancie J" uniqKey="Maciver N" first="Nancie J" last="Maciver">Nancie J. Maciver</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pediatrics, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kater, Arnon P" sort="Kater, Arnon P" uniqKey="Kater A" first="Arnon P" last="Kater">Arnon P. Kater</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam</wicri:regionArea>
<wicri:noRegion>1105 AZ Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weinberg, J Brice" sort="Weinberg, J Brice" uniqKey="Weinberg J" first="J Brice" last="Weinberg">J Brice Weinberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC 27705.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rathmell, Jeffrey C" sort="Rathmell, Jeffrey C" uniqKey="Rathmell J" first="Jeffrey C" last="Rathmell">Jeffrey C. Rathmell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; jeff.rathmell@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville</wicri:regionArea>
<wicri:noRegion>Nashville</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27511728</idno>
<idno type="pmid">27511728</idno>
<idno type="doi">10.4049/jimmunol.1502464</idno>
<idno type="pmc">PMC5010978</idno>
<idno type="wicri:Area/Main/Corpus">000999</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000999</idno>
<idno type="wicri:Area/Main/Curation">000999</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000999</idno>
<idno type="wicri:Area/Main/Exploration">000999</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.</title>
<author>
<name sortKey="Siska, Peter J" sort="Siska, Peter J" uniqKey="Siska P" first="Peter J" last="Siska">Peter J. Siska</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Van Der Windt, Gerritje J W" sort="Van Der Windt, Gerritje J W" uniqKey="Van Der Windt G" first="Gerritje J W" last="Van Der Windt">Gerritje J W. Van Der Windt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands;</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam</wicri:regionArea>
<wicri:noRegion>1105 AZ Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kishton, Rigel J" sort="Kishton, Rigel J" uniqKey="Kishton R" first="Rigel J" last="Kishton">Rigel J. Kishton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Sivan" sort="Cohen, Sivan" uniqKey="Cohen S" first="Sivan" last="Cohen">Sivan Cohen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pharmacology and Cancer Biology, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Eisner, William" sort="Eisner, William" uniqKey="Eisner W" first="William" last="Eisner">William Eisner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pediatrics, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Maciver, Nancie J" sort="Maciver, Nancie J" uniqKey="Maciver N" first="Nancie J" last="Maciver">Nancie J. Maciver</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Pediatrics, Duke University, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kater, Arnon P" sort="Kater, Arnon P" uniqKey="Kater A" first="Arnon P" last="Kater">Arnon P. Kater</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">Pays-Bas</country>
<wicri:regionArea>Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam</wicri:regionArea>
<wicri:noRegion>1105 AZ Amsterdam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weinberg, J Brice" sort="Weinberg, J Brice" uniqKey="Weinberg J" first="J Brice" last="Weinberg">J Brice Weinberg</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC 27705.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Rathmell, Jeffrey C" sort="Rathmell, Jeffrey C" uniqKey="Rathmell J" first="Jeffrey C" last="Rathmell">Jeffrey C. Rathmell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; jeff.rathmell@vanderbilt.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville</wicri:regionArea>
<wicri:noRegion>Nashville</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of immunology (Baltimore, Md. : 1950)</title>
<idno type="eISSN">1550-6606</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Glucose (antagonists & inhibitors)</term>
<term>Glucose (metabolism)</term>
<term>Glucose Transporter Type 1 (antagonists & inhibitors)</term>
<term>Glucose Transporter Type 1 (genetics)</term>
<term>Glycolysis (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Leukemia, Lymphocytic, Chronic, B-Cell (immunology)</term>
<term>Lymphocyte Activation (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Spleen (cytology)</term>
<term>Spleen (immunology)</term>
<term>T-Lymphocytes (immunology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation des lymphocytes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Glucose (antagonistes et inhibiteurs)</term>
<term>Glucose (métabolisme)</term>
<term>Glycolyse (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Leucémie chronique lymphocytaire à cellules B (immunologie)</term>
<term>Lignée cellulaire tumorale (MeSH)</term>
<term>Lymphocytes T (immunologie)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Rate (cytologie)</term>
<term>Rate (immunologie)</term>
<term>Souris (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transporteur de glucose de type 1 (antagonistes et inhibiteurs)</term>
<term>Transporteur de glucose de type 1 (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glucose</term>
<term>Glucose Transporter Type 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucose Transporter Type 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucose</term>
<term>Multiprotein Complexes</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Glucose</term>
<term>Transporteur de glucose de type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Rate</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Spleen</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Transporteur de glucose de type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Leucémie chronique lymphocytaire à cellules B</term>
<term>Lymphocytes T</term>
<term>Rate</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Leukemia, Lymphocytic, Chronic, B-Cell</term>
<term>Spleen</term>
<term>T-Lymphocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Glucose</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Carbohydrate Metabolism</term>
<term>Cell Line, Tumor</term>
<term>Glycolysis</term>
<term>Humans</term>
<term>Lymphocyte Activation</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mice</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation des lymphocytes</term>
<term>Animaux</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Glycolyse</term>
<term>Humains</term>
<term>Lignée cellulaire tumorale</term>
<term>Métabolisme glucidique</term>
<term>Souris</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27511728</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>08</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1550-6606</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>197</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>09</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of immunology (Baltimore, Md. : 1950)</Title>
<ISOAbbreviation>J Immunol</ISOAbbreviation>
</Journal>
<ArticleTitle>Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.</ArticleTitle>
<Pagination>
<MedlinePgn>2532-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4049/jimmunol.1502464</ELocationID>
<Abstract>
<AbstractText>Leukemia can promote T cell dysfunction and exhaustion that contributes to increased susceptibility to infection and mortality. The treatment-independent mechanisms that mediate leukemia-associated T cell impairments are poorly understood, but metabolism tightly regulates T cell function and may contribute. In this study, we show that B cell leukemia causes T cells to become activated and hyporesponsive with increased PD-1 and TIM3 expression similar to exhausted T cells and that T cells from leukemic hosts become metabolically impaired. Metabolic defects included reduced Akt/mammalian target of rapamycin complex 1 (mTORC1) signaling, decreased expression of the glucose transporter Glut1 and hexokinase 2, and reduced glucose uptake. These metabolic changes correlated with increased regulatory T cell frequency and expression of PD-L1 and Gal-9 on both leukemic and stromal cells in the leukemic microenvironment. PD-1, however, was not sufficient to drive T cell impairment, as in vivo and in vitro anti-PD-1 blockade on its own only modestly improved T cell function. Importantly, impaired T cell metabolism directly contributed to dysfunction, as a rescue of T cell metabolism by genetically increasing Akt/mTORC1 signaling or expression of Glut1 partially restored T cell function. Enforced Akt/mTORC1 signaling also decreased expression of inhibitory receptors TIM3 and PD-1, as well as partially improved antileukemia immunity. Similar findings were obtained in T cells from patients with acute or chronic B cell leukemia, which were also metabolically exhausted and had defective Akt/mTORC1 signaling, reduced expression of Glut1 and hexokinase 2, and decreased glucose metabolism. Thus, B cell leukemia-induced inhibition of T cell Akt/mTORC1 signaling and glucose metabolism drives T cell dysfunction.</AbstractText>
<CopyrightInformation>Copyright © 2016 by The American Association of Immunologists, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Siska</LastName>
<ForeName>Peter J</ForeName>
<Initials>PJ</Initials>
<Identifier Source="ORCID">0000-0002-1521-6213</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Windt</LastName>
<ForeName>Gerritje J W</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Experimental Immunology, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kishton</LastName>
<ForeName>Rigel J</ForeName>
<Initials>RJ</Initials>
<Identifier Source="ORCID">0000-0002-5682-3896</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Sivan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eisner</LastName>
<ForeName>William</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>MacIver</LastName>
<ForeName>Nancie J</ForeName>
<Initials>NJ</Initials>
<Identifier Source="ORCID">0000-0003-3676-9391</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Duke University, Durham, NC 27710;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kater</LastName>
<ForeName>Arnon P</ForeName>
<Initials>AP</Initials>
<Identifier Source="ORCID">0000-0003-3190-1891</Identifier>
<AffiliationInfo>
<Affiliation>Department of Hematology, Academic Medical Center, 1100 DD Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weinberg</LastName>
<ForeName>J Brice</ForeName>
<Initials>JB</Initials>
<Identifier Source="ORCID">0000-0003-4052-5576</Identifier>
<AffiliationInfo>
<Affiliation>Department of Medicine, Duke University, Durham, NC 27708; and Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC 27705.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rathmell</LastName>
<ForeName>Jeffrey C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232; jeff.rathmell@vanderbilt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>F31 CA183529</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK105550</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK106090</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Immunol</MedlineTA>
<NlmUniqueID>2985117R</NlmUniqueID>
<ISSNLinking>0022-1767</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051272">Glucose Transporter Type 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051272" MajorTopicYN="N">Glucose Transporter Type 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015451" MajorTopicYN="N">Leukemia, Lymphocytic, Chronic, B-Cell</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008213" MajorTopicYN="N">Lymphocyte Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013154" MajorTopicYN="N">Spleen</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013601" MajorTopicYN="N">T-Lymphocytes</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have no conflicts of interest to declare</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>11</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>8</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27511728</ArticleId>
<ArticleId IdType="pii">jimmunol.1502464</ArticleId>
<ArticleId IdType="doi">10.4049/jimmunol.1502464</ArticleId>
<ArticleId IdType="pmc">PMC5010978</ArticleId>
<ArticleId IdType="mid">NIHMS805191</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Immunity. 2011 Dec 23;35(6):871-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22195744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2015 Jul 9;126(2):126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26160184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Nov 15;183(10):6095-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19841171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Haematologica. 2013 Jun;98(6):953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23300177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2016 Feb;30(2):337-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26338274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2015 Jun;21(6):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25939063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2007 Apr;18(4):1437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17301289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Nov;82(21):7414-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3933007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2011 Jun;12(6):492-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21739672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Oct 15;70(20):8066-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2014 Sep;44(9):2603-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24975127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 Jun 1;182(11):6697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19454664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2008 Jun 15;111(12):5446-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Nov;25(21):9543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16227604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2003 Aug;33(8):2223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12884297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Feb 20;40(2):289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2007 Sep;21(9):1859-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 6;153(6):1239-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23746840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leuk Res. 1998 Feb;22(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9593474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Biol Ther. 2008 May;7(5):622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leuk Res. 2009 Mar;33(3):460-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18838168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2015 Jul 9;126(2):203-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25800048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jun;27(12):4328-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17371841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Aug 14;124(7):1056-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Jul 30;39(2):171-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20670887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2014 Jul 17;124(3):453-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24891321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2013 Feb 28;121(9):1612-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23247726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Sep 10;162(6):1217-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Apr 1;180(7):4476-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2009 Dec 21;206(13):3015-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20008522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Mar 26;6:6692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25809635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Oncol. 2014 Apr 1;32(10):1020-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2007 Oct;27(4):670-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17950003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Sep 10;162(6):1229-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26321679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2014 Feb;35(2):51-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24210163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2003 Nov;17(11):2252-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2013;31:259-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Jun 19;30(6):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Mar 15;186(6):3299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2012 Feb 1;18(3):678-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22190592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E166-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25548167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2015 Apr;36(4):257-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25773310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2014 Jul 1;20(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24930970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2013 Nov;14 (11):1173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Immunol. 2015 Jan;36(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25522665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2013 Aug;33(16):3091-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23732914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2011 Apr 7;117(14):3836-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leuk Lymphoma. 2013 Aug;54(8):1602-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23206225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2014 Sep;28(9):1872-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24569779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Hematol. 1999 Sep;27(9):1375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2005 Jul;115(7):1797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15965501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2005 Sep 30;64(3):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16182371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2002 Nov 15;169(10):5538-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12421930</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Siska, Peter J" sort="Siska, Peter J" uniqKey="Siska P" first="Peter J" last="Siska">Peter J. Siska</name>
</region>
<name sortKey="Cohen, Sivan" sort="Cohen, Sivan" uniqKey="Cohen S" first="Sivan" last="Cohen">Sivan Cohen</name>
<name sortKey="Eisner, William" sort="Eisner, William" uniqKey="Eisner W" first="William" last="Eisner">William Eisner</name>
<name sortKey="Kishton, Rigel J" sort="Kishton, Rigel J" uniqKey="Kishton R" first="Rigel J" last="Kishton">Rigel J. Kishton</name>
<name sortKey="Maciver, Nancie J" sort="Maciver, Nancie J" uniqKey="Maciver N" first="Nancie J" last="Maciver">Nancie J. Maciver</name>
<name sortKey="Rathmell, Jeffrey C" sort="Rathmell, Jeffrey C" uniqKey="Rathmell J" first="Jeffrey C" last="Rathmell">Jeffrey C. Rathmell</name>
<name sortKey="Weinberg, J Brice" sort="Weinberg, J Brice" uniqKey="Weinberg J" first="J Brice" last="Weinberg">J Brice Weinberg</name>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Van Der Windt, Gerritje J W" sort="Van Der Windt, Gerritje J W" uniqKey="Van Der Windt G" first="Gerritje J W" last="Van Der Windt">Gerritje J W. Van Der Windt</name>
</noRegion>
<name sortKey="Kater, Arnon P" sort="Kater, Arnon P" uniqKey="Kater A" first="Arnon P" last="Kater">Arnon P. Kater</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27511728
   |texte=   Suppression of Glut1 and Glucose Metabolism by Decreased Akt/mTORC1 Signaling Drives T Cell Impairment in B Cell Leukemia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27511728" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020